Agroecological Approach to Agricultural Sustainability, Food Sovereignty And Endogenous Circular Economy
DOI:
https://doi.org/10.59552/nppr.v3i1.57Keywords:
“8-S”-elements, agroecology, ecosystem services, nature-based solutions, Policy, NepalAbstract
The resource over-exploitative, waste-burdening, linear developmental model has transgressed the planetary safe operating limits of the earth systems engendering climatic emergencies and also exacerbated socioeconomic imbalances. The only way of mitigating these planetary and social crises is to formulate and strictly enact ecofriendly, resource recycling, circular economic, equitable, decentralized and peoples´ participatory developmental policies and practices. The objective of this review is to contribute to the discourse on transformative agriculture-centred, circular economic policies and practices that foster nature-based solutions and prudent extraction, use, re-use, and recycling of resources while minimizing waste and environmental externalities. The review highlights Nepal’s geophysical, agroecological and socioeconomic realities, their manifestations and policy implications. It also explores how past development policies have been mismatched with these realities, eroding the indigenous resource bases and knowledge systems, and thereby, disrupting the agriculture-based, self-reliant, and food sovereign livelihoods systems. The article argues that agroecology, as a science, practice and movement envisions a nature-based, circular economic and socially just transformative pathway towards sustainable agri-food systems embracing food sufficiency, safety and sovereignty. This pathway contributes to healthy people, healthy animals and healthy ecosystems, hence strengthening the vision of One Health. Building on the agroecological perspectives, this article presents the resynthesized eight operational elements referred to as “8-S-elements” for agroecological transformation. These elements pertain to the prudent management of space (S1), species (S2), seeds (S3), soils (S4), seasonality (S5) and stress factors (S6) through the synergistic integration of agroecosystems and livelihood systems components (S7) with socioeconomic rationality (S8). In the Nepalese context, as an agriculture-based economy, agri-food and livelihoods are viewed as complementary facets. This study recommends the transformative policy options based on the principles of ecological stewardship and socioeconomic objectivity.
References
Adhikari, J., Shrestha, M., & Paudel, D. (2021). Nepal’s growing dependency on food imports: A threat to national sovereignty and ways forward. Nepal Public Policy Review, 1, 68–86. https://doi.org/10.3126/nppr.v1i1.43429
Adhikari, J., Timsina, J., Khadka, S. R., Ghale, Y., & Ojha, H. (2021). COVID-19 impacts on agriculture and food systems in Nepal: Implications for SDGs. Agricultural Systems, 186, 102990. https://doi.org/10.1016/j.agsy.2020.102990
Altieri, M. A. (1993). Ethnoscience and biodiversity: key elements in the design of sustainable pest management systems for small farmers in developing countries. Agriculture, Ecosystems and Environment, 46(1–4), 257–272. https://doi.org/10.1016/0167-8809(93)90029-O
Baral, N., Stern, M. J., & Heinen, J. T. (2007). Integrated conservation and development project life cycles in the Annapurna Conservation Area, Nepal: Is development overpowering conservation? Biodiversity and Conservation, 16(10), 2903–2917. https://doi.org/10.1007/s10531-006-9143-5
Barrett, C. B., Benton, T., Fanzo, J., Herrero, M., Nelson, R. J., Bageant, E., Buckler, E., Cooper, K., Culotta, I., Fan, S., Gandhi, R., James, S., Kahn, M., Lawson-Lartego, L., Liu, J., Marshall, Q., Mason-D’Croz, D., Mathys, A., Mathys, C., … Wood, S. (2022). Socio-Technical Innovation Bundles for Agri-Food Systems Transformation (C. B. Barrett, T. Benton, J. Fanzo, M. Herrero, R. J. Nelson, E. Bageant, E. Buckler, K. Cooper, I. Culotta, S. Fan, R. Gandhi, S. James, M. Kahn, L. Lawson-Lartego, J. Liu, Q. Marshall, D. Mason-D’Croz, A. Mathys, C. Mathys, … S. Wood (eds.); pp. 1–20). Springer International Publishing. https://doi.org/10.1007/978-3-030-88802-2_1
Baryla, A., & Pierzgalski, E. (2008). Ridged terraces – functions, construction and use. Journal of Environmental Engineering and Landscape Management, 16(2), 1–6. https://doi.org/10.3846/1648-6897.2008.16.104-109
Baude, M., Meyer, B. C., & Schindewolf, M. (2019). Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Science of the Total Environment, 659, 1526–1536. https://doi.org/10.1016/j.scitotenv.2018.12.455
Beillouin, D., Schauberger, B., Bastos, A., Ciais, P., & Makowski, D. (2020). Impact of extreme weather conditions on European crop production in 2018: Random forest - Yield anomalies. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1810), 20190510. https://doi.org/10.1098/rstb.2019.0510
Béné, C. (2020). Resilience of local food systems and links to food security – A review of some important concepts in the context of COVID-19 and other shocks. Food Security, 12(4), 805–822. https://doi.org/10.1007/s12571-020-01076-1
Bras, A., Roy, A., Heckel, D. G., Anderson, P., & Karlsson Green, K. (2022). Pesticide resistance in arthropods: Ecology matters too. Ecology Letters, 25(8), 1746–1759. https://doi.org/10.1111/ele.14030
Brühl, C. A., & Zaller, J. G. (2019). Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Frontiers in Environmental Science, 7, 177. https://doi.org/10.3389/fenvs.2019.00177
Campbell, B. M., Beare, D. J., Bennett, E. M., Hall-Spencer, J. M., Ingram, J. S. I., Jaramillo, F., Ortiz, R., Ramankutty, N., Sayer, J. A., & Shindell, D. (2017). Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecology and Society, 22(4). https://doi.org/10.5751/ES-09595-220408
Canfield, M., Anderson, M. D., & McMichael, P. (2021). UN Food Systems Summit 2021: Dismantling Democracy and Resetting Corporate Control of Food Systems. Frontiers in Sustainable Food Systems, 5, 661552. https://doi.org/10.3389/fsufs.2021.661552
Ceccarelli, S., & Grando, S. (2019). From participatory to evolutionary plant breeding. In Farmers and Plant Breeding: Current Approaches and Perspectives (pp. 231–243). Routledge. https://doi.org/10.4324/9780429507335-15
Ceccarelli, S., & Grando, S. (2022). Return to Agrobiodiversity: Participatory Plant Breeding. Diversity, 14(2), 126. https://doi.org/10.3390/d14020126
Chen, D., Wei, W., & Chen, L. (2017). Effects of terracing practices on water erosion control in China: A meta-analysis. Earth-Science Reviews, 173, 109–121. https://doi.org/10.1016/j.earscirev.2017.08.007
Chen, N., Liu, M., Allen, S., Deng, M., Khanal, N. R., Peng, T., Tian, S., Huggel, C., Wu, K., Rahman, M., & Somos-Valenzuela, M. (2023). Small outbursts into big disasters: Earthquakes exacerbate climate-driven cascade processes of the glacial lakes failure in the Himalayas. Geomorphology, 422, 108539. https://doi.org/10.1016/j.geomorph.2022.108539
Chen, X., Chen, H. Y. H., Chen, C., Ma, Z., Searle, E. B., Yu, Z., & Huang, Z. (2020). Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biological Reviews, 95(1), 167–183. https://doi.org/10.1111/brv.12554
Colley, M. R., Tracy, W. F., Lammerts van Bueren, E. T., Diffley, M., & Almekinders, C. J. M. (2022). How the Seed of Participatory Plant Breeding Found Its Way in the World through Adaptive Management. Sustainability (Switzerland), 14(4), 2132. https://doi.org/10.3390/su14042132
Corral, F. J. G., Vázquez, R. M. M., García, J. M., & Valenciano, J. de P. (2022). The Circular Economy as an Axis of Agricultural and Rural Development: The Case of the Municipality of Almócita (Almería, Spain). Agronomy, 12(7), 1553. https://doi.org/10.3390/agronomy12071553
Cowie, R. H., Bouchet, P., & Fontaine, B. (2022). The Sixth Mass Extinction: fact, fiction or speculation? Biological Reviews, 97(2), 640–663. https://doi.org/10.1111/brv.12816
Cowling, W. A. (2013). Sustainable plant breeding. Plant Breeding, 132(1), 1–9. https://doi.org/10.1111/pbr.12026
Crews, T. E., Carton, W., & Olsson, L. (2018). Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Global Sustainability, 1, e11. https://doi.org/10.1017/sus.2018.11
D’Acunto, L., Semmartin, M., & Ghersa, C. M. (2014). Uncropped field margins to mitigate soil carbon losses in agricultural landscapes. Agriculture, Ecosystems and Environment, 183, 60–68. https://doi.org/10.1016/j.agee.2013.10.022
D’Acunto, L., Semmartin, M., & Ghersa, C. M. (2016). Uncultivated margins are source of soil microbial diversity in an agricultural landscape. Agriculture, Ecosystems and Environment, 220, 1–7. https://doi.org/10.1016/j.agee.2015.12.032
Dahal, R. K. (2022). Earthquake-Induced Landslides in the Nepal Himalaya. In Coseismic Landslides: Phenomena, Long-Term Effects and Mitigation (pp. 59–82). Springer. https://doi.org/10.1007/978-981-19-6597-5_3
Delêtre, M., McKey, D. B., & Hodkinson, T. R. (2011). Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proceedings of the National Academy of Sciences of the United States of America, 108(45), 18249–18254. https://doi.org/10.1073/pnas.1106259108
Devkota, M., Devkota, K. P., Acharya, S., & McDonald, A. J. (2019). Increasing profitability, yields and yield stability through sustainable crop establishment practices in the rice-wheat systems of Nepal. Agricultural Systems, 173, 414–423. https://doi.org/10.1016/j.agsy.2019.03.022
Dhakal, C. P. (2022). A Glimpse of the Tourism Sector in Nepal. Hong Kong Journal of Social Sciences, 60. https://doi.org/10.55463/hkjss.issn.1021-3619.60.28
Dirzo, R., Ceballos, G., & Ehrlich, P. R. (2022). Circling the drain: the extinction crisis and the future of humanity. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1857), 20210378. https://doi.org/10.1098/rstb.2021.0378
Dollinger, J., Dagès, C., Bailly, J. S., Lagacherie, P., & Voltz, M. (2015). Managing ditches for agroecological engineering of landscape. A review. Agronomy for Sustainable Development, 35(3), 999–1020. https://doi.org/10.1007/s13593-015-0301-6
Enjalbert, J., Dawson, J. C., Paillard, S., Rhoné, B., Rousselle, Y., Thomas, M., & Goldringer, I. (2011). Dynamic management of crop diversity: From an experimental approach to on-farm conservation. Comptes Rendus - Biologies, 334(5–6), 458–468. https://doi.org/10.1016/j.crvi.2011.03.005
Fonzen, P. F., & Oberholzer, E. (1985). Use of multipurpose trees in hill farming systems in Western Nepal. Agroforestry Systems, 2(3), 187–197. https://doi.org/10.1007/BF00147033
Freeman, J., Anderies, J. M., Beckman, N. G., Robinson, E., Baggio, J. A., Bird, D., Nicholson, C., Finley, J. B., Capriles, J. M., Gil, A. F., Byers, D., Gayo, E., & Latorre, C. (2021). Landscape Engineering Impacts the Long-Term Stability of Agricultural Populations. Human Ecology, 49(4), 369–382. https://doi.org/10.1007/s10745-021-00242-z
Gallé, R., Geppert, C., Földesi, R., Tscharntke, T., & Batáry, P. (2020). Arthropod functional traits shaped by landscape-scale field size, local agri-environment schemes and edge effects. Basic and Applied Ecology, 48, 102–111. https://doi.org/10.1016/j.baae.2020.09.006
Gardner, C. J., Thierry, A., Rowlandson, W., & Steinberger, J. K. (2021). From Publications to Public Actions: The Role of Universities in Facilitating Academic Advocacy and Activism in the Climate and Ecological Emergency. Frontiers in Sustainability, 2, 679019. https://doi.org/10.3389/frsus.2021.679019
Garnier, J., Le Noë, J., Marescaux, A., Sanz-Cobena, A., Lassaletta, L., Silvestre, M., Thieu, V., & Billen, G. (2019). Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): From traditional agriculture to conventional intensive systems. Science of the Total Environment, 660, 1486–1501. https://doi.org/10.1016/j.scitotenv.2019.01.048
Ge, G., Zhang, J., Chen, X., Liu, X., Hao, Y., Yang, X., & Kwon, S. M. (2022). Effects of land use and land cover change on ecosystem services in an arid desert-oasis ecotone along the Yellow River of China. Ecological Engineering, 176, 100963. https://doi.org/10.1016/j.ecoleng.2021.106512
Ghale, Y. (2010). Corporate globalisation: Hunger and livelihood insecurity in Nepal. Livelihood Insecurity and Social Conflict in Nepal, 09–48.
Giráldez, J. V., Ayuso, J. L., Garcia, A., López, J. G., & Roldán, J. (1988). Water harvesting strategies in the semiarid climate of southeastern Spain. Agricultural Water Management, 14(1–4), 253–263. https://doi.org/10.1016/0378-3774(88)90079-0
Givens, J. E., Huang, X., & Jorgenson, A. K. (2019). Ecologically unequal exchange: A theory of global environmental injustice. Sociology Compass, 13(5), e12693. https://doi.org/10.1111/soc4.12693
Glibert, P. M. (2020). From hogs to HABs: impacts of industrial farming in the US on nitrogen and phosphorus and greenhouse gas pollution. Biogeochemistry, 150(2), 139–180. https://doi.org/10.1007/s10533-020-00691-6
Gobinath, R., Ganapathy, G. P., Gayathiri, E., Salunkhe, A. A., & Pourghasemi, H. R. (2022). Ecoengineering practices for soil degradation protection of vulnerable hill slopes. In Computers in Earth and Environmental Sciences (pp. 255–270). Elsevier. https://doi.org/10.1016/b978-0-323-89861-4.00002-6
Gordon, E., Davila, F., & Riedy, C. (2021, November 2). Transforming landscapes and mindscapes through regenerative agriculture. Agriculture and Human Values, 39(2), 809–826. https://doi.org/10.1007/s10460-021-10276-0
Gould, F., Brown, Z. S., & Kuzma, J. (2018). Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance? Science, 360(6390), 728–732. https://doi.org/10.1126/science.aar3780
Grechyna, D. (2021). Trade openness and political distortions. Economics and Politics, 33(3), 644–663. https://doi.org/10.1111/ecpo.12179
Guthman, J. (1997). Representing crisis: The theory of Himalayan environmental degradation and the project of development in post-rana Nepal. Development and Change, 28(1), 45–69. https://doi.org/10.1111/1467-7660.00034
Halewood, M., Chiurugwi, T., Sackville Hamilton, R., Kurtz, B., Marden, E., Welch, E., Michiels, F., Mozafari, J., Sabran, M., Patron, N., Kersey, P., Bastow, R., Dorius, S., Dias, S., McCouch, S., & Powell, W. (2018). Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. New Phytologist, 217(4), 1407–1419. https://doi.org/10.1111/nph.14993
Hawkins, N. J., Bass, C., Dixon, A., & Neve, P. (2019). The evolutionary origins of pesticide resistance. Biological Reviews, 94(1), 135–155. https://doi.org/10.1111/brv.12440
Herridge, D. F., Giller, K. E., Jensen, E. S., & Peoples, M. B. (2022). Quantifying country-to-global scale nitrogen fixation for grain legumes II. Coefficients, templates and estimates for soybean, groundnut and pulses. Plant and Soil, 474(1–2), 1–15. https://doi.org/10.1007/s11104-021-05166-7
Hirschfeld, S., & Van Acker, R. (2021). Review: ecosystem services in permaculture systems. Agroecology and Sustainable Food Systems, 45(6), 794–816. https://doi.org/10.1080/21683565.2021.1881862
Hossain, A., Krupnik, T. J., Timsina, J., Mahboob, M. G., Chaki, A. K., Farooq, M., Bhatt, R., Fahad, S., & Hasanuzzaman, M. (2020). Agricultural Land Degradation: Processes and Problems Undermining Future Food Security. In Environment, Climate, Plant and Vegetation Growth (pp. 17–61). Springer. https://doi.org/10.1007/978-3-030-49732-3_2
Huber, L., Schirpke, U., Marsoner, T., Tasser, E., & Leitinger, G. (2020). Does socioeconomic diversification enhance multifunctionality of mountain landscapes? Ecosystem Services, 44, 101122. https://doi.org/10.1016/j.ecoser.2020.101122
Hussain, A., Sarangi, G. K., Pandit, A., Ishaq, S., Mamnun, N., Ahmad, B., & Jamil, M. K. (2019). Hydropower development in the Hindu Kush Himalayan region: Issues, policies and opportunities. Renewable and Sustainable Energy Reviews, 107, 446–461. https://doi.org/10.1016/j.rser.2019.03.010
ICOMOS. (2021). Heritage and the Sustainable Development Goals. International Journal of Heritage Studies. https://openarchive.icomos.org/id/eprint/2453/1/ICOMOS_SDGs_Policy_Guidance_2021.pdf
Isbell, F., Adler, P. R., Eisenhauer, N., Fornara, D., Kimmel, K., Kremen, C., Letourneau, D. K., Liebman, M., Polley, H. W., Quijas, S., & Scherer-Lorenzen, M. (2017). Benefits of increasing plant diversity in sustainable agroecosystems. Journal of Ecology, 105(4), 871–879. https://doi.org/10.1111/1365-2745.12789
Jaramillo, F., & Destouni, G. (2015). Comment on “planetary boundaries: Guiding human development on a changing planet.” Science, 348(6240), 1217–c. https://doi.org/10.1126/science.aaa9629
Joshi, B. K., Ayer, D. K., Gauchan, D., & Jarvis, D. (2020). Concept and rationale of evolutionary plant breeding and its status in Nepal. Journal of Agriculture and Forestry University, 1–11. https://doi.org/10.3126/jafu.v4i1.47023
Karlsson Green, K., Stenberg, J. A., & Lankinen, Å. (2020). Making sense of Integrated Pest Management (IPM) in the light of evolution. Evolutionary Applications, 13(8), 1791–1805. https://doi.org/10.1111/eva.13067
Khadka, N. (1998). Challenges to developing the economy of Nepal. Contemporary South Asia, 7(2), 147–165. https://doi.org/10.1080/09584939808719836
Khanal, N. (2022). Integration of perennial forage seed crops for cropping systems resiliency in the Peace River region of western Canada. Canadian Journal of Plant Science. https://doi.org/10.1139/cjps-2022-0125
Khanal, N. (2023). Sustainable Agriculture and Cultivation Practices. Reference Module in Food Science. https://doi.org/10.1016/b978-0-12-823960-5.00080-9
Khanal, N., Azooz, R., Rahman, N., Klein-Gebbinck, H., Otani, J. K., Yoder, C. L., & Gauthier, T. M. (2021). Value of integrating perennial forage seed crops in annual cropping sequences. Agronomy Journal, 113(5), 4064–4084. https://doi.org/10.1002/agj2.20781
Khanal, N. R., Nepal, P., Zhang, Y., Nepal, G., Paudel, B., Liu, L., & Rai, R. (2020). Policy provisions for agricultural development in Nepal: A review. Journal of Cleaner Production, 261, 121241. https://doi.org/10.1016/j.jclepro.2020.121241
Khatri, A., & Paija, N. (2021). A long-run nexus of renewable energy consumption and economic growth in Nepal. In Energy-Growth Nexus in an Era of Globalization (pp. 27–66). Elsevier. https://doi.org/10.1016/B978-0-12-824440-1.00017-5
Khoury, C. K., Brush, S., Costich, D. E., Curry, H. A., de Haan, S., Engels, J. M. M., Guarino, L., Hoban, S., Mercer, K. L., Miller, A. J., Nabhan, G. P., Perales, H. R., Richards, C., Riggins, C., & Thormann, I. (2022). Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytologist, 233(1), 84–118. https://doi.org/10.1111/nph.17733
Khoury, C. K., Greene, S. L., Krishnan, S., Miller, A. J., & Moreau, T. (2019). A road map for conservation, use, and public engagement around north america’s crop wild relatives and wild utilized plants. Crop Science, 59(6), 2302–2307. https://doi.org/10.2135/cropsci2019.05.0309
Kitaoka, S. (2019). Current State and Future Prospects of Environmental Barrier Coatings. Materia Japan, 58(7), 387–390. https://doi.org/10.2320/materia.58.387
Koirala, D. P., & Acharya, B. (2022). Households’ fuel choices in the context of a decade-long load-shedding problem in Nepal. Energy Policy, 162, 112795. https://doi.org/10.1016/j.enpol.2022.112795
Laborde, D., Mamun, A., Martin, W., Piñeiro, V., & Vos, R. (2021). Agricultural subsidies and global greenhouse gas emissions. Nature Communications, 12(1), 2601. https://doi.org/10.1038/s41467-021-22703-1
Lal, R. (2018). Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, 24(8), 3285–3301. https://doi.org/10.1111/gcb.14054
Li, D., Lu, X., Walling, D. E., Zhang, T., Steiner, J. F., Wasson, R. J., Harrison, S., Nepal, S., Nie, Y., Immerzeel, W. W., Shugar, D. H., Koppes, M., Lane, S., Zeng, Z., Sun, X., Yegorov, A., & Bolch, T. (2022). High Mountain Asia hydropower systems threatened by climate-driven landscape instability. Nature Geoscience, 15(7), 520–530. https://doi.org/10.1038/s41561-022-00953-y
Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H., Remington, T., . . . Torquebiau, E. F. (2014, November 26). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068–1072. https://doi.org/10.1038/nclimate2437
Liu, Y., Duan, M., & Yu, Z. (2013). Agricultural landscapes and biodiversity in China. Agriculture, Ecosystems and Environment, 166, 46–54. https://doi.org/10.1016/j.agee.2011.05.009
Lockwood, C. (2021). Agroecology now! Transformations towards more just and sustainable food systems. In Agroecology and Sustainable Food Systems (Vol. 45, Issue 10). Springer Nature. https://doi.org/10.1080/21683565.2021.1952363
Ma, C. Sen, Zhang, W., Peng, Y., Zhao, F., Chang, X. Q., Xing, K., Zhu, L., Ma, G., Yang, H. P., & Rudolf, V. H. W. (2021). Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications, 12(1), 5351. https://doi.org/10.1038/s41467-021-25505-7
Magar, R. T. (2016). Gravity Goods Ropeways: A Sustainable Solution for Rural Transportation in Hilly and Mountainous Regions of Nepal. http://scholarsbank.uoregon.edu/xmlui/handle/1794/20424
Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability (Switzerland), 13(3), 1–21. https://doi.org/10.3390/su13031318
Malla, S. (2022). An outlook of end-use energy demand based on a clean energy and technology transformation of the household sector in Nepal. Energy, 238, 121810. https://doi.org/10.1016/j.energy.2021.121810
Marone, D., Russo, M. A., Mores, A., Ficco, D. B. M., Laidò, G., Mastrangelo, A. M., & Borrelli, G. M. (2021). Importance of landraces in cereal breeding for stress tolerance. Plants, 10(7), 1267. https://doi.org/10.3390/plants10071267
Martin, A. E., Collins, S. J., Crowe, S., Girard, J., Naujokaitis-Lewis, I., Smith, A. C., Lindsay, K., Mitchell, S., & Fahrig, L. (2020). Effects of farmland heterogeneity on biodiversity are similar to—or even larger than—the effects of farming practices. Agriculture, Ecosystems and Environment, 288, 106698. https://doi.org/10.1016/j.agee.2019.106698
Martin, E. A., Dainese, M., Clough, Y., Báldi, A., Bommarco, R., Gagic, V., Garratt, M. P. D., Holzschuh, A., Kleijn, D., Kovács-Hostyánszki, A., Marini, L., Potts, S. G., Smith, H. G., Al Hassan, D., Albrecht, M., Andersson, G. K. S., Asís, J. D., Aviron, S., Balzan, M. V., … Steffan-Dewenter, I. (2019). The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 22(7), 1083–1094. https://doi.org/10.1111/ele.13265
McKay, D. I. A., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., & Lenton, T. M. (2022). Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science, 377(6611), eabn7950. https://doi.org/10.1126/science.abn7950
McLaughlin, P. (2011). Climate Change, Adaptation, and Vulnerability. In Organization & Environment (Vol. 24, Issue 3). IPCC Geneva, Switzerland: https://doi.org/10.1177/1086026611419862
Menconi, M. E., Giordano, S., & Grohmann, D. (2022). Revisiting global food production and consumption patterns by developing resilient food systems for local communities. Land Use Policy, 119, 106210. https://doi.org/10.1016/j.landusepol.2022.106210
Metz, J. J. (1995). Development in Nepal: Investment in the status quo. GeoJournal, 35(2), 175–184. https://doi.org/10.1007/BF00814063
Mir, R. A., Sharma, A., & Mahajan, R. (2020). Crop Landraces: Present Threats and Opportunities for Conservation. Rediscovery of Genetic and Genomic Resources for Future Food Security, 335–349. https://doi.org/10.1007/978-981-15-0156-2_13
Montenegro de Wit, M. (2021). What grows from a pandemic? Toward an abolitionist agroecology. Journal of Peasant Studies, 48(1), 99–136. https://doi.org/10.1080/03066150.2020.1854741
Mora, C., Spirandelli, D., Franklin, E. C., Lynham, J., Kantar, M. B., Miles, W., Smith, C. Z., Freel, K., Moy, J., Louis, L. V., Barba, E. W., Bettinger, K., Frazier, A. G., Colburn IX, J. F., Hanasaki, N., Hawkins, E., Hirabayashi, Y., Knorr, W., Little, C. M., … Hunter, C. L. (2018). Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nature Climate Change, 8(12), 1062–1071. https://doi.org/10.1038/s41558-018-0315-6
Mueller, N. G., & Flachs, A. (2022). Domestication, crop breeding, and genetic modification are fundamentally different processes: implications for seed sovereignty and agrobiodiversity. Agriculture and Human Values, 39(1), 455–472. https://doi.org/10.1007/s10460-021-10265-3
Nemes, G., Chiffoleau, Y., Zollet, S., Collison, M., Benedek, Z., Colantuono, F., Dulsrud, A., Fiore, M., Holtkamp, C., Kim, T. Y., Korzun, M., Mesa-Manzano, R., Reckinger, R., Ruiz-Martínez, I., Smith, K., Tamura, N., Viteri, M. L., & Orbán, É. (2021). The impact of COVID-19 on alternative and local food systems and the potential for the sustainability transition: Insights from 13 countries. Sustainable Production and Consumption, 28, 591–599. https://doi.org/10.1016/j.spc.2021.06.022
Nepal, S., Neupane, N., Belbase, D., Pandey, V. P., & Mukherji, A. (2021). Achieving water security in Nepal through unravelling the water-energy-agriculture nexus. International Journal of Water Resources Development, 37(1), 67–93. https://doi.org/10.1080/07900627.2019.1694867
Neupane, D., Kafle, S., Karki, K. R., Kim, D. H., & Pradhan, P. (2022). Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis. Renewable Energy, 181, 278–291. https://doi.org/10.1016/j.renene.2021.09.027
Özkara, A., Akyıl, D., & Konuk, M. (2016). Pesticides, environmental pollution, and health. In Environmental health risk-hazardous factors to living species. IntechOpen.
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., & Grace, P. (2014). Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems and Environment, 187, 87–105. https://doi.org/10.1016/j.agee.2013.10.010
Papangelou, A., & Mathijs, E. (2021). Assessing agro-food system circularity using nutrient flows and budgets. Journal of Environmental Management, 288, 112383. https://doi.org/10.1016/j.jenvman.2021.112383
Paul, C., Weber, M., & Knoke, T. (2017). Agroforestry versus farm mosaic systems – Comparing land-use efficiency, economic returns and risks under climate change effects. Science of the Total Environment, 587–588, 22–35. https://doi.org/10.1016/j.scitotenv.2017.02.037
Perfecto, I., Vandermeer, J., & Wright, A. (2019). Nature’s Matrix: Linking Agriculture, Biodiversity Conservation and Food Sovereignty. In Nature’s Matrix: Linking Agriculture, Biodiversity Conservation and Food Sovereignty. Routledge. https://doi.org/10.4324/9780429028557
Persson, L., Carney Almroth, B. M., Collins, C. D., Cornell, S., De Wit, C. A., Diamond, M. L., Fantke, P., Hassellöv, M., Macleod, M., Ryberg, M. W., Søgaard Jørgensen, P., Villarrubia-Gómez, P., Wang, Z., & Hauschild, M. Z. (2022). Response to Comment on “outside the Safe Operating Space of the Planetary Boundary for Novel Entities.” Environmental Science and Technology, 56(3), 1510–1521. https://doi.org/10.1021/acs.est.2c02265
Phalan, B., Onial, M., Balmford, A., & Green, R. E. (2011). Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science, 333(6047), 1289–1291. https://doi.org/10.1126/science.1208742
Pravalie, R., Patriche, C., Borrelli, P., Panagos, P., Rosca, B., Dumitrascu, M., Nita, I. A., Savulescu, I., Birsan, M. V., & Bandoc, G. (2021). Arable lands under the pressure of multiple land degradation processes. A global perspective. Environmental Research, 194, 110697. https://doi.org/10.1016/j.envres.2020.110697
Quandt, A., Neufeldt, H., & McCabe, J. T. (2019). Building livelihood resilience: what role does agroforestry play? Climate and Development, 11(6), 485–500. https://doi.org/10.1080/17565529.2018.1447903
Raihan, A., & Tuspekova, A. (2022). The nexus between economic growth, energy use, urbanization, tourism, and carbon dioxide emissions: New insights from Singapore. Sustainability Analytics and Modeling, 2, 100009. https://doi.org/10.1016/j.samod.2022.100009
Rajbhandari, B. P. (2017). Bio-Intensive Farming System and Sustainable Livelihoods. In Himalayan College of Agricultural Sciences and Technology (HICAST) (pp. 98–99). Himalayan College of Agricultural Sciences and Technology (HICAST) PO Box …. https://www.researchgate.net/profile/Binayak-Rajbhandari/publication/320416381_Biointensive_farming_system_and_sustainable_livelihoods/links/5a0ff681aca27287ce274ca6/Biointensive-farming-system-and-sustainable-livelihoods.pdf
Rasul, G., Hussain, A., Mahapatra, B., & Dangol, N. (2018). Food and nutrition security in the Hindu Kush Himalayan region. Journal of the Science of Food and Agriculture, 98(2), 429–438. https://doi.org/10.1002/jsfa.8530
Rey, F., Bifulco, C., Bischetti, G. B., Bourrier, F., De Cesare, G., Florineth, F., Graf, F., Marden, M., Mickovski, S. B., Phillips, C., Peklo, K., Poesen, J., Polster, D., Preti, F., Rauch, H. P., Raymond, P., Sangalli, P., Tardio, G., & Stokes, A. (2019). Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration. Science of the Total Environment, 648, 1210–1218. https://doi.org/10.1016/j.scitotenv.2018.08.217
Rhoades, R. E., & Thompson, S. I. (1975). Adaptive Strategies in Alpine Environments: Beyond Ecological Particularism 1 . American Ethnologist, 2(3), 535–551. https://doi.org/10.1525/ae.1975.2.3.02a00110
Rijal, K., Bansal, N. K., & Grover, P. D. (1991). Energy in subsistence agriculture: A case study of nepal. International Journal of Energy Research, 15(2), 109–122. https://doi.org/10.1002/er.4440150205
Rijal, S., Rimal, B., Acharya, R. P., & Stork, N. E. (2021). Land use/land cover change and ecosystem services in the Bagmati River Basin, Nepal. Environmental Monitoring and Assessment, 193(10), 1–17. https://doi.org/10.1007/s10661-021-09441-z
Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., & Smith, J. (2016, July 12). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46(1), 4–17. https://doi.org/10.1007/s13280-016-0793-6
Scherr, S. J., Shames, S., & Friedman, R. (2012). From climate-smart agriculture to climate-smart landscapes. Agriculture & Food Security, 1, 1–15.
Schmidt, M., Jochheim, H., Kersebaum, K. C., Lischeid, G., & Nendel, C. (2017). Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes – a review. Agricultural and Forest Meteorology, 232, 659–671. https://doi.org/10.1016/j.agrformet.2016.10.022
Schoeneberger, M. M. (2009). Agroforestry: Working trees for sequestering carbon on agricultural lands. Agroforestry Systems, 75(1), 27–37. https://doi.org/10.1007/s10457-008-9123-8
Schröder, P., Lemille, A., & Desmond, P. (2020). Making the circular economy work for human development. Resources, Conservation and Recycling, 156, 104686. https://doi.org/10.1016/j.resconrec.2020.104686
Shrestha, B. B., & Shrestha, K. K. (2021). Invasions of Alien Plant Species in Nepal. Invasive Alien Species, 2, 168–183. https://doi.org/10.1002/9781119607045.ch20
Shrestha, U. B., & Shrestha, B. B. (2019). Climate change amplifies plant invasion hotspots in Nepal. Diversity and Distributions, 25(10), 1599–1612. https://doi.org/10.1111/ddi.12963
Soltani, A., Hajjarpour, A., & Vadez, V. (2016). Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crops Research, 185, 21-30. https://doi.org/10.1016/j.fcr.2015.10.015
Somasundaram, J., Sinha, N. K., Dalal, R. C., Lal, R., Mohanty, M., Naorem, A. K., Hati, K. M., Chaudhary, R. S., Biswas, A. K., Patra, A. K., & Chaudhari, S. K. (2020). No-Till Farming and Conservation Agriculture in South Asia–Issues, Challenges, Prospects and Benefits. Critical Reviews in Plant Sciences, 39(3), 236–279. https://doi.org/10.1080/07352689.2020.1782069
Stronza, A. L., Hunt, C. A., & Fitzgerald, L. A. (2022). Ecotourism for conservation? Routledge Handbook of Ecotourism, 44, 372–397. https://doi.org/10.4324/9781003001768-28
Sugden, F. (2009). Neo-liberalism, markets and class structures on the Nepali lowlands: The political economy of agrarian change. Geoforum, 40(4), 634–644. https://doi.org/10.1016/j.geoforum.2009.03.010
Suman, A. (2021). Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal. Renewable and Sustainable Energy Reviews, 151, 111524. https://doi.org/10.1016/j.rser.2021.111524
Sun, Q., Miao, C., Hanel, M., Borthwick, A. G. L., Duan, Q., Ji, D., & Li, H. (2019). Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environment International, 128, 125–136. https://doi.org/10.1016/j.envint.2019.04.025
Thomas, M., Demeulenaere, E., Dawson, J. C., Khan, A. R., Galic, N., Jouanne-Pin, S., Remoue, C., Bonneuil, C., & Goldringer, I. (2012). On-farm dynamic management of genetic diversity: The impact of seed diffusions and seed saving practices on a population-variety of bread wheat. Evolutionary Applications, 5(8), 779–795. https://doi.org/10.1111/j.1752-4571.2012.00257.x
Tiwari, P. C. (2000). Land-use changes in Himalaya and their impact on the plains ecosystem: Need for sustainable land use. Land Use Policy, 17(2), 101–111. https://doi.org/10.1016/S0264-8377(00)00002-8
Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(3), 1–24. https://doi.org/10.3390/ijerph18031112
Turnšek, M., Gangenes Skar, S. L., Piirman, M., Thorarinsdottir, R. I., Bavec, M., & Junge, R. (2022). Home Gardening and Food Security Concerns during the COVID-19 Pandemic. Horticulturae, 8(9), 778. https://doi.org/10.3390/horticulturae8090778
Upadhyay, S. N., & Gaudel, P. (2018). Water Resources Development in Nepal: Myths and Realities. Hydro Nepal: Journal of Water, Energy and Environment, 23, 22–29. https://doi.org/10.3126/hn.v23i0.20822
Uprety, R., & Shivakoti, S. (2019). Extension policies and reforms in Nepal: an analysis of challenges, constraints, and policy options. In Agricultural Extension Reforms in South Asia: Status, Challenges, and Policy Options (pp. 61–77). Elsevier. https://doi.org/10.1016/B978-0-12-818752-4.00004-7
Vasseur C., Joannon A., Burel F., Goffi C., Meynard J.M., B. J. (2008). The mosaic of crop management sequences: a hidden part of agricultural landscapes heterogeneity. The 15th Annual IALE(UK) Conference: Landscape Ecology and Conservation, 33–41.
Vasseur, C., Joannon, A., Aviron, S., Burel, F., Meynard, J. M., & Baudry, J. (2013). The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agriculture, Ecosystems and Environment, 166, 3–14. https://doi.org/10.1016/j.agee.2012.08.013
Vindegg, M. (2022). Borderline politics: Reading Nepal-India relations as ‘energohistory.’ History and Anthropology, 1–20.
Wang-Erlandsson, L., Tobian, A., van der Ent, R. J., Fetzer, I., te Wierik, S., Porkka, M., Staal, A., Jaramillo, F., Dahlmann, H., Singh, C., Greve, P., Gerten, D., Keys, P. W., Gleeson, T., Cornell, S. E., Steffen, W., Bai, X., & Rockström, J. (2022). A planetary boundary for green water. Nature Reviews Earth and Environment, 3(6), 380–392. https://doi.org/10.1038/s43017-022-00287-8
Wezel, A., Herren, B. G., Kerr, R. B., Barrios, E., Gonçalves, A. L. R., & Sinclair, F. (2020). Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agronomy for Sustainable Development, 40(6), 1–13. https://doi.org/10.1007/s13593-020-00646-z
Willett, A. B. J. (1993). Indigenous Knowledge and Its Implication for Agricultural Development and Agricultural Education: a Case Study of the Vedic Tradition in Nepal. In Education. Iowa State University.
Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12(1), 2501. https://doi.org/10.1038/s41467-021-22702-2
Zhang, H., Li, P., Zhang, Z., Li, W., Chen, J., Song, X., Shibasaki, R., & Yan, J. (2022). Epidemic versus economic performances of the COVID-19 lockdown: A big data driven analysis. Cities, 120. https://doi.org/10.1016/j.cities.2021.103502
Zhang, Y., Fan, J., & Wang, S. (2020). Assessment of ecological carrying capacity and ecological security in China’s typical eco-engineering areas. Sustainability (Switzerland), 12(9), 3923. https://doi.org/10.3390/su12093923
Zollet, S., Colombo, L., De Meo, P., Marino, D., McGreevy, S. R., McKeon, N., & Tarra, S. (2021). Towards territorially embedded, equitable and resilient food systems? Insights from grassroots responses to covid-19 in italy and the city region of rome. Sustainability (Switzerland), 13(5), 1–25. https://doi.org/10.3390/su13052425
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nityananda Khanal, Sushil Thapa

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.